SFí

Syrian Private University

Algorithms \& Data Structure I

Instructor: Dr. Mouhib Alnoukari

Algorithm Analysis

Algorithm Analysis

Outline:
In this topic, we will examine code to determine the run time of various operations.
We will calculate the run times of:

- Operators

$$
+,-,=,+=,++, \text { etc. }
$$

- Control statements if, for, while, do-while, switch
- Functions
- Recursive functions

Motivation

The goal of algorithm analysis is to take a block of code and determine the asymptotic run time or asymptotic memory requirements based on various parameters

- Given an array of size n :
- Selection sort requires $\Theta\left(n^{2}\right)$ time
- Merge sort, quick sort, and heap sort all require $\Theta(n \ln (n))$ time
- However:
- Merge sort requires $\Theta(n)$ additional memory
- Quick sort requires $\Theta(\ln (n))$ additional memory
- Heap sort requires $\Theta(1)$ memory

Motivation

To properly investigate the determination of run times asymptotically:

- We will begin with machine instructions
- Discuss operations
- Control statements
- Conditional statements and loops
- Functions
- Recursive functions

Operators

Because each machine instruction can be executed in a fixed number of cycles, we may assume each operation requires a fixed number of cycles

- The time required for any operator is $\Theta(1)$ including:
- Retrieving/storing variables from memory
- Variable assignment
- Integer operations
- Logical operations
- Bitwise operations
- Relational operations
- Memory allocation and deallocation

```
=
+ - * / % ++ --
&& || !
& | ^ ~
== != < <= => >
new delete
```


Blocks of Operations

Each operation runs in $\Theta(1)$ time and therefore any fixed number of operations also run in $\Theta(1)$ time, for example:

```
// Swap variables a and b
int tmp = a;
\(\mathrm{a}=\mathrm{b}\);
b = tmp;
```


Blocks in Sequence

Suppose you have now analyzed a number of blocks of code run in sequence

```
template <typename T>
void update_capacity( int delta ) {
    T *array_old = array;
    int capacity_old = array_capacity;
    array_capacity += delta;
    array = new T[array_capacity];
    for ( int i = 0; i < capacity_old; ++i ) {
        array[i] = array_old[i]; }\Theta(n
    }
    delete[] array_old;
}

To calculate the total run time, add the entries: \(\boldsymbol{\Theta}(1+n+1)=\boldsymbol{\Theta}(n)\)

\section*{Blocks in Sequence}

Other examples include:
- Run three blocks of code which are \(\Theta(1), \Theta\left(n^{2}\right)\), and \(\Theta(n)\)

Total run time \(\boldsymbol{\Theta}\left(1+n^{2}+n\right)=\boldsymbol{\Theta}\left(n^{2}\right)\)
- Run two blocks of code which are \(\Theta(n \ln (n))\), and \(\Theta\left(n^{1.5}\right)\)

Total run time \(\boldsymbol{\Theta}\left(n \ln (n)+n^{1.5}\right)=\boldsymbol{\Theta}\left(n^{1.5}\right)\)

- When considering a sum, take the dominant term

\section*{Control Statements}

Next we will look at the following control statements:
These are statements which potentially alter the execution of instructions
- Conditional statements
if, switch
- Condition-controlled loops
for, while, do-while
- Count-controlled loops
\[
\text { for } i \text { from } 1 \text { to } 10 \text { do ... end do; }
\]
- Collection-controlled loops
foreach ( int i in array ) \{ ... \} // C\#

\section*{Control Statements}

Given any collection of nested control statements, it is always necessary to work inside out
- Determine the run times of the inner-most statements and work your way out

\section*{Control Statements}

Given:
```

if (condition) {
// true body
} else {
// false body
}

```

The run time of a conditional statement is:
- the run time of the condition (the test), plus
- the run time of the body which is run

In most cases, the run time of the condition is \(\Theta(1)\)

\section*{Control Statements}

\section*{In some cases, it is easy to determine which statement must be run:}
```

int factorial (int n) {
if (n == 0) {
return 1;
} else {
return n * factorial (n - 1);
}
}

```

\section*{Control Statements}

\section*{In others, it is less obvious}
- Find the maximum entry in an array:
```

int find_max(int *array, int n) {
max = array[0];
for (int i = 1; i < n; ++i) {
if (array[i] > max) {
max = array[i];
}
}
return max;
}

```

\section*{Condition-controlled Loops}

The for loop is a condition controlled statement:
```

for (int i = 0; i < N; ++i) {
// ...
}

```
is identical to
```

int i = 0; // initialization
while (i < N) { // condition
// ...
++i; // increment
}

```

\section*{Condition-controlled Loops}

The initialization, condition, and increment usually are single statements running in \(\Theta(1)\)
```

for (int i = 0; i < N; ++i) {
// ...
}

```

\section*{Condition-controlled Loops}

The initialization, condition, and increment statements are usually \(\Theta(1)\)

For example,
```

 for (int i = 0; i < n; ++i) {
 // ...
 }
    ```

Assuming there are no break or return statements in the loop, the run time is \(\Theta(n)\)

\section*{Condition-controlled Loops}

If the body does not depend on the variable (in this example, i), then the run time of :
```

 for (int \(i=0 ; i<n ;++i)\) \{
 // code which is Theta(f(n))
 \}
 is: $\Theta(n \mathrm{f}(n))$

```

If the body is \(\Theta(\mathrm{f}(n))\), then the run time of the loop is \(\Theta(n \mathrm{f}(n))\)


\section*{Condition-controlled Loops}

\section*{Eor exannole, \\ int sum \(=0\); \\ for ( int \(i=0 ; i<n ;++i)\) \{ \\ sum \(+=1\); // Theta(1) \\ \(\}\)}

This code has run time:
\[
\Theta(n \cdot 1)=\Theta(n)
\]

\section*{Condition-controlled Loops}

Another example example,
```

int sum = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
sum += 1; Theta(1)
}
}

```

The previous example showed that the inner loop is \(\Theta(n)\), thus the outer loop is:
\[
\Theta(n \cdot n)=\Theta\left(n^{2}\right)
\]

\section*{Analysis of Repetition Statements}

Suppose with each loop, we use a linear search an array of size \(m\) :
for ( int \(i=0 ; i<n ;++i)\) \{
// search through an array of size m
// O( m ) ;
\}

The inner loop is \(\mathbf{O}(m)\) and thus the outer loop is:
\(\mathbf{O}\) (n.m)

\section*{Conditional Statements}

\section*{Consider this example}
```

void Disjoint_sets::clear() {
if (sets == n) { @(1)
return;
}
max_height = 0;
num_disjoint_sets = n;
for (int i = 0; i < n; ++i) { }\quad\Theta(n
parent[i] = i;
tree_height[i] = 0;
} \Theta(1)

```


\section*{Analysis of Repetition Statements}

If the body does depends on the variable (in this example, i), then the run time of:
for ( int \(i=0 ; i<n ;++i)\) \{
// code which is Theta(f(i,n))
\}
IS: \(\quad \Theta\left(1+\sum_{i=0}^{n-1} 1+\mathrm{f}(i, n)\right)\)
and if the body is
\(\mathbf{O}(\mathrm{f}(i, n))\), the result is :
\[
\mathbf{O}\left(1+\sum_{i=0}^{n-1} 1+\mathrm{f}(i, n)\right)
\]

\section*{Analysis of Repetition Statements}
```

For example,
int sum = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j< i; ++j) {
sum += i + j;
}
}

```

The inner loop is \(\mathbf{O}(1+(1+i))=\boldsymbol{\Theta}(i)\) hence the outer is:
\(\boldsymbol{\Theta}\left(1+\sum_{i=0}^{n-1} 1+i\right)=\boldsymbol{\Theta}\left(1+n+\sum_{i=0}^{n-1} i\right)=\boldsymbol{\Theta}\left(1+n+\frac{n(n-1)}{2}\right)=\boldsymbol{\Theta}\left(n^{2}\right)\)

\section*{Analysis of Repetition Statements}

As another example:
```

int sum = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
for (int k = 0; k < j; ++k) {
sum += i + j + k;
}
}
}

```

From inside to out:

\author{
\(\Theta(1)\) \\ \(\Theta(j)\) \\ \(\Theta\left(i^{2}\right)\) \\ \(\Theta\left(n^{3}\right)\)
}

\section*{Control Statements}

\section*{Switch statements appear to be nested if statements:}
```

switch(i) {
case 1: /* do stuff */ break;
case 2: /* do other stuff */ break;
case 3: /* do even more stuff */ break;
case 4: /* well, do stuff */ break;
case 5: /* tired yet? */ break;
default: /* do default stuff */
}

```

\section*{Control Statements}

Thus, a switch statement would appear to run in \(\mathbf{O}(n)\) time where \(n\) is the number of cases, the same as nested if statements - Why then not use:
```

if (i == 1) { /* do stuff */ }
else if (i == 2) { /* do other stuff */ }
else if (i == 3) { /* do even more stuff */ }
else if (i == 4) { /* well, do stuff */ }
else if (i == 5) { /* tired yet? */ }
else { /* do default stuff */ }

```

\section*{Serial Statements}

Suppose we run one block of code followed by another block of code.

Such code is said to be run serially

If the first block of code is \(\mathbf{O}(\mathrm{f}(n))\) and the second is \(\mathbf{O}(\mathrm{g}(n))\), then the run time of two blocks of code is:
\[
\mathbf{O}(\mathrm{f}(n)+\mathrm{g}(n))
\]
which usually (for algorithms not including function calls) simplifies to one or the other.

\section*{Serial Statements}

Consider the following two problems:
- search through a random list of size \(n\) to find the maximum entry, and
- search through a random list of size \(n\) to find if it contains a particular entry

What is the proper means of describing the run time of these two algorithms?

\section*{Serial Statements}

Searching for the maximum entry requires that each element in the array be examined, thus, it must run in \(\Theta(n)\) time.

Searching for a particular entry may end earlier: for example, the first entry we are searching for may be the one we are looking for, thus, it runs in \(\mathbf{O}(n)\) time.


\section*{Serial Statements}

\section*{Therefore:}
- if the leading term is big- \(\Theta\), then the result must be big- \(\Theta\), otherwise
- if the leading term is big-O, we can say the result is big-O

For example,
\[
\begin{aligned}
& \mathbf{O}(n)+\mathbf{O}\left(n^{2}\right)+\mathbf{O}\left(n^{4}\right)=\mathbf{O}\left(n+n^{2}+n^{4}\right)=\mathbf{O}\left(n^{4}\right) \\
& \mathbf{O}(n)+\Theta\left(n^{2}\right)=\Theta\left(n^{2}\right) \\
& \mathbf{O}\left(n^{2}\right)+\Theta(n)=\mathbf{O}\left(n^{2}\right) \\
& \mathbf{O}\left(n^{2}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{2}\right)
\end{aligned}
\]

\section*{Functions}

A function (or subroutine) is code which has been separated out, either to:
- and repeated operations
- e.g., mathematical functions
- group related tasks
- e.g., initialization

\section*{Functions}

Because a subroutine (function) can be called from anywhere, we must:
- prepare the appropriate environment
- deal with arguments (parameters)
- jump to the subroutine
- execute the subroutine
- deal with the return value
- clean up

\section*{Functions}

Fortunately, this is such a common task that all modern processors have instructions that perform most of these steps in one instruction.

Thus, we will assume that the overhead required to make a function call and to return is \(\Theta(1)\).

\section*{Functions}

Because any function requires the overhead of a function call and return, we will always assume that
\[
\mathrm{T}_{\mathrm{f}}=\Omega(1)
\]

That is, it is impossible for any function call to have a zero run time.

\section*{Functions}

Thus, given a function \(\mathrm{f}(n)\) (the run time of which depends on \(n\) ) we will associate the run time of \(\mathrm{f}(n)\) by some function \(\mathrm{T}_{\mathrm{f}}(n)\)
- We may write this to \(\mathrm{T}(n)\)

Because the run time of any function is at least \(\mathbf{O}(1)\), we will include the time required to both call and return from the function in the run time.

\section*{Functions}

\section*{Consider this function:}
```

void Disjoint/sets::set_unIon(int m, int n) {
if m=find(m);
--num_disjoint_sets;
T
if (tree_height[m] >= tree_height[n]) {
parent[n] = m;
if (tree_height[m] == tree_height[n]) {
++(tree_height[m]);
max_height = std::max(max_height, tree_height[m]);
\Theta(1)
}
} else {
parent[m] = n;
}
}

```

\section*{Recursive Functions}

A function is relatively simple (and boring) if it simply performs operations and calls other functions.

Most interesting functions designed to solve problems usually end up calling themselves.
- Such a function is said to be recursive


\section*{Recursive Functions}

As an example, we could implement the factorial function recursively:
```

int factorial(int n) {
if (n <= 1) {
return 1;
} else {
return n * factorial(n - 1);
}
}

```


\section*{Recursive Functions}

Thus, we may analyze the run time of this function as follows:
\[
T_{:}(n)= \begin{cases}\Theta(1) & n \leq 1 \\ T_{!}(n-1)+\Theta(1) & n>1\end{cases}
\]

We don't have to worry about the time of the conditional \((\Theta(1))\) nor is there a probability involved with the conditional statement.


\section*{Recursive Functions}

The analysis of the run time of this function yields a recurrence relation:
\[
\mathrm{T}_{!}(n)=\mathrm{T}_{!}(n-1)+\Theta(1) \quad \mathrm{T}_{!}(1)=\Theta(1)
\]

This recurrence relation has Landau symbols...
- Replace each Landau symbol with a representative function:
\[
\mathrm{T}_{!}(n)=\mathrm{T}_{!}(n-1)+1 \quad \mathrm{~T}_{!}(1)=1
\]


\section*{Recursive Functions}

We can examine the first few steps:
\[
\begin{aligned}
& \mathrm{T}_{!}(n) \quad=\mathrm{T}_{!}(n-1)+1 \\
= & \mathrm{T}_{!}(n-2)+1+1=\mathrm{T}_{!}(n-2)+2 \\
= & \mathrm{T}_{!}(n-3)+3
\end{aligned}
\]

From this, we see a pattern:
\[
\mathrm{T}_{!}(n)=\mathrm{T}_{!}(n-k)+k
\]


\section*{Recursive Functions}

If \(k=n-1\) then:
\[
\begin{aligned}
& \mathrm{T}_{!}(n) \quad=\mathrm{T}_{!}(n-(n-1))+n-1 \\
& \quad=\mathrm{T}_{!}(1)+n-1 \\
& \quad=1+n-1=n
\end{aligned}
\]

Thus, \(\mathrm{T}_{!}(n)=\Theta(n)\)

\section*{Recursive Functions}

\section*{Analyzing the function, we get:}
\}

\section*{Recursive Functions}

Thus, replacing each Landau symbol with a representative, we are required to solve the recurrence relation:
\[
\mathrm{T}(n)=\mathrm{T}(n-1)+n \quad \mathrm{~T}(1)=1
\]
\[
-1-n+(n+1)\left(\frac{n}{2}+1\right)
\]
\[
\frac{1}{2} n+\frac{1}{2} n^{2}
\]

\section*{Recursive Functions}

Consequently, the sorting routine has the run time
\[
\mathrm{T}(n)=\Theta\left(n^{2}\right)
\]

To see this by hand, consider the following
\[
\begin{aligned}
\mathrm{T}(n) & =\mathrm{T}(n-1)+n \\
& =(\mathrm{T}(n-2)+(n-1))+n \\
& =\mathrm{T}(n-2)+n+(n-1) \\
& =\mathrm{T}(n-3)+n+(n-1)+(n-2)
\end{aligned}
\]
\[
=\mathrm{T}(1)+\sum_{i=2}^{n} i=1+\sum_{i=2}^{n} i=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
\]

\section*{Recursive Functions}

Consider, instead, a binary search of a sorted list:
- Check the middle entry
- If we do not find it, check either the left- or right-hand side, as appropriate

Thus, \(\mathrm{T}(n)=\mathrm{T}((n-1) / 2)+\Theta(1)\)


\section*{Recursive Functions}

Also, if \(n=1\), then \(\mathrm{T}(1)=\boldsymbol{\Theta}(1)\)

Thus we have to solve:
\[
\mathrm{T}(n)=\left\{\begin{array}{cc}
1 & n=1 \\
\mathrm{~T}\left(\frac{n-1}{2}\right)+1 & n>1
\end{array}\right.
\]

Solving this can be difficult, in general, so we will consider only special values of \(n\).

Assume \(n=2^{k}-1\) where \(k\) is an integer
Then \((n-1) / 2=\left(2^{k}-1-1\right) / 2=2^{k-1}-1\)


\section*{Recursive Functions}

For example, searching a list of size 31 requires us to check the center.

If it is not found, we must check one of the two halves, each of which is size 15
\[
\begin{aligned}
& 31=2^{5}-1 \\
& 15=2^{4}-1
\end{aligned}
\]

\section*{Recursive Functions}

Thus, we can write:
\[
\begin{aligned}
\mathrm{T}(n) & =\mathrm{T}\left(2^{k}-1\right) \\
& =\mathrm{T}\left(\frac{2^{k}-1-1}{2}\right)+1 \\
& =\mathrm{T}\left(2^{k-1}-1\right)+1 \\
& =\mathrm{T}\left(\frac{2^{k-1}-1-1}{2}\right)+1+1 \\
& =\mathrm{T}\left(2^{k-2}-1\right)+2
\end{aligned}
\]

\section*{Recursive Functions}

Notice the pattern with one more step:
\[
\begin{aligned}
& \left.=\mathrm{T}\left(2^{k-1}-1\right)+1\right) \\
& =\mathrm{T}\left(\frac{2^{k-1}-1-1}{2}\right)+1+1 \\
& =\mathrm{T}\left(2^{k-2}-1\right)+2 \\
& =\mathrm{T}\left(2^{k-3}-1\right)+3
\end{aligned}
\]


\section*{Recursive Functions}

Thus, in general, we may deduce that after \(k-1\) steps:
\[
\begin{aligned}
\mathrm{T}(n) & =\mathrm{T}\left(2^{k}-1\right) \\
& =\mathrm{T}\left(2^{k-(k-1)}-1\right)+k-1 \\
& =\mathrm{T}(1)+k-1=k
\end{aligned}
\]
because \(\mathrm{T}(1)=1\)

\section*{Recursive Functions}

Thus, \(\mathrm{T}(n)=k\), but \(n=2^{k}-1\)
Therefore \(k=\lg (n+1)\)
However, recall that \(f(n)=\Theta(g(n))\) if \(\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c\)
\(0<c<\infty\)
\[
\lim _{n \rightarrow \infty} \frac{\lg (n+1)}{\ln (n)}=\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1) \ln (2)}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{(n+1) \ln (2)}=\frac{1}{\ln (2)}
\]

Thus, \(\mathrm{T}(n)=\boldsymbol{\Theta}(\lg (n+1))=\Theta(\ln (n))\)

\section*{Cases}

As well as determining the run time of an algorithm, because the data may not be deterministic, we may be interested in:
- Best-case run time
- Average-case run time
- Worst-case run time

In many cases, these will be significantly different.


\section*{Cases}

\section*{Searching a list linearly is simple enough}

We will count the number of comparisons
- Best case:
- The first element is the one we're looking for: \(\mathbf{O}\) (1)
- Worst case:
- The last element is the one we're looking for, or it is not in the list: \(\mathbf{O}(n)\)
- Average case?
- We need some information about the list...

\section*{Cases}

Assume the case we are looking for is in the list and equally likely distributed.

If the list is of size \(n\), then there is a \(1 / n\) chance of it being in the \(i\) th location

Thus, we sum:
\[
\frac{1}{n} \sum_{i=1}^{n} i=\frac{1}{n} \frac{n(n+1)}{2}=\frac{n+1}{2}
\]
which is \(\mathbf{O}(n)\).


\section*{Exercise}

\section*{Prove that running time \(\mathrm{T}(n)=n^{3}+20 n+1\) is \(\mathrm{O}\left(n^{3}\right)\)}

Proof: by the Big-Oh definition, \(\mathrm{T}(n)\) is \(\mathrm{O}\left(n^{3}\right)\) if \(\mathrm{T}(n) \leq c \cdot n^{3}\) for some \(n \geq n_{0}\). Let us check this condition: if \(n^{3}+20 n+1 \leq c \cdot n^{3}\) then \(1+\frac{20}{n^{2}}+\frac{1}{n^{3}} \leq c\). Therefore, the Big-Oh condition holds for \(\mathrm{n} \geq n_{0}=1\) and \(\mathrm{c} \geq 22(=1+20+1)\). Larger values of \(n_{0}\) result in smaller factors \(c\) (e.g., for \(n_{0}=10 c \geq 1.201\) and so on) but in any case the above statement is valid.

\section*{Exercise}

\section*{Prove that running time \(\mathrm{T}(n)=n^{3}+20 n+1\) is not \(\mathrm{O}\left(n^{2}\right)\)}

Proof: by the Big-Oh definition, \(\mathrm{T}(n)\) is \(\mathrm{O}\left(n^{2}\right)\) if \(\mathrm{T}(n) \leq c \cdot n^{2}\) for some \(n \geq n_{0}\). Let us check this condition: if \(n^{3}+20 n+1 \leq c \cdot n^{2}\) then \(n+\frac{20}{n}+\frac{1}{n^{2}} \leq c\). Therefore, the Big-Oh condition cannot hold (the left side of the latter inequality is growing infinitely, so that there is no such constant factor \(c\) ).```

